DÉRIVÉES ET PRIMITIVES

I. Primitive d'une fonction:

1°) Définition :

Définition:

Soit f une fonction définie et dérivable sur un intervalle I.

On appelle fonction primitive de f sur I toute fonction F dérivable sur I telle que F' = f sur I.

Exemple:

Si f(x) = 2x, une primitive de f est $F(x) = x^2$, une autre est $F_2(x) = x^2 + 7$.

2°) Ensemble des primitives :

Théorème:

Soit F une primitive de f sur un intervalle I. Alors pour tout réel c, la fonction G définie par G(x) = F(x) + c est aussi une primitive de f sur I. Toute primitive de f sur I est de ce type.

Remarque:

Une fonction admettant des primitives sur *I* en possède donc une infinité.

Exemple:

Si f(x) = 2x, toutes les primitives de f sont de la forme $F(x) = x^2 + c$ avec $c \in \mathbb{R}$.

3°) Tableau des primitives :

En lisant le tableau des dérivées à « l'envers », on obtient le tableau suivant :

	La fonction f	Fonctions primitives <i>F</i> (<i>c</i> est une constante réelle)	Définie sur
1	f(x) = 0	F(x) = c	IR
2	f(x) = k	$F\left(x\right) =kx+c$	IR
3	$f\left(x\right) =x$	$F(x) = \frac{x^2}{2} + c$	IR
4	$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1} + c$ (<i>n</i> entier relatif non nul différent de -1)	R
5	$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + c$	IR*
6	$f(x) = \frac{1}{\sqrt{x}} \ .$	$F(x) = 2\sqrt{x} + c$	IR _*
7	$f(x) = \sin(x)$	$F(x) = -\cos(x) + c$	IR
8	$f(x) = \cos(x)$	$F(x) = \sin(x) + c$	IR

III. Détermination de primitives :

1°) Opérations sur les primitives :

Théorème:

Soient f et g deux fonctions dérivables sur un intervalle I de \mathbb{R} et k une constante réelle.

Si F est une primitive de f, alors kF est une primitive sur I de kf.

Si F est une primitive de f et G une primitive de g alors F + G est une primitive de f + g.

Exemples:

Soient $f(x) = x^5$ et $g(x) = \sin x$. D'après le tableau ci-dessus, $F(x) = \frac{x^6}{6}$ et $G(x) = -\cos x$ sont des primitives respectives de f et g.

Donc, si h(x) = 6f(x), alors $H(x) = 6F(x) = x^6$ est une primitive de h(x).

Si
$$i(x) = f(x) + g(x)$$
, alors I $(x) = F(x) + G(x) = \frac{x^6}{6} - \cos x$ est une primitive de $i(x)$

2°) Primitive prenant une valeur en un point donné :

Propriété:

Soit f une fonction dérivable sur un intervalle I. Soit x_0 un nombre de l'intervalle I et a un nombre réel quelconque. Il existe une unique fonction F, primitive de f sur I, telle que F (x_0) = a.

Exemple:

Soit f(x) = x. Déterminons la primitive F de f telle que F(2) = 3.

F est de la forme $F(x) = \frac{x^2}{2} + c$. On doit avoir F(2) = 3 donc $\frac{2^2}{2} + c = 3$ donc c = 1. La primitive cherchée est donc $F(x) = x^2 + 1$.

II. Complément :

1°) Dérivée de g(ax + b):

Propriété:

Soit f une fonction définie sur un intervalle I, et g une fonction définie et dérivable sur J telles que f(x) = g(ax + b), où a et b sont des réels tels que $ax + b \in J$.

Si la fonction g est dérivable sur J, alors f est dérivable sur I et f'(x) = ag'(ax + b).

Exemple:

Soit f la fonction définie et dérivable sur \mathbb{R} par $f(x) = \cos(3x + 2)$.

$$f(x) = g(ax + b)$$
, avec $g(x) = \cos(x)$ et $ax + b = 3x + 2$. Donc $a = 3$, et $g'(x) = -\sin(x)$.
alors $f'(x) = ag'(ax + b) = a \times (-\sin(ax + b)) = -3\sin(3x + 2)$.

2°) Complément sur les primitives :

	La fonction f	Fonctions primitives F	Définie sur
		(c est une constante réelle)	
9	$f(t) = \sin\left(\omega t + \varphi\right)$	$F(t) = -\frac{1}{\omega}\cos(\omega t + \varphi) + c$	IR
10	$f(t) = \cos(\omega t + \varphi)$	$F(t) = \frac{1}{\omega} \sin(\omega t + \varphi) + c$	IR