Nom: Prénom:

TEST DE RENTRÉE DE MATHÉMATIQUES Sujet A

Spé math Term

1 heure

Les réponses sont à compléter sur la feuille de l'énoncé.

Exercice 1 3 points

Ce Q.C.M. comporte 4 questions. Pour chaque question, entourez la ou les bonnes réponses.

Une bonne réponse rapporte 0,5 point, une mauvaise réponse enlève 0,5 point.

On se place dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

Données	а	b	С	d
1. ABCD est un carré de côté a $\overrightarrow{AB} \cdot \overrightarrow{CD} =$	a^2	$\overline{-a^2}$	0	2 <i>a</i>
2. Dans un triangle ABC, on a $AC = 4$; $AB = 5$ et $\widehat{BAC} = 60^{\circ}$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = 10$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = -10$	$\overrightarrow{BA} \cdot \overrightarrow{AC} = -10$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = 20$
3. Dans un repère orthonormé, soient deux vecteurs \vec{u} (3; -8) et \vec{v} (2; -5). Alors $\vec{u} \cdot \vec{v}$ =		-31	-34	46
4. $2x + 3y + 1 = 0$ est une équation cartésienne de droite	de vecteur directeur \vec{u} (-3; 2)	de vecteur normal \vec{u} (3; -2)	de vecteur normal \vec{u} (2; 3)	de coefficient directeur $m = \frac{-2}{3}$

Exercice 2 3 points

Résoudre les équations et inéquations suivantes :

a)
$$-x^2 + 2x + 3 = 0$$

$$\Delta = b^2 - 4ac = 4 + 12 = 16$$

L'équation a donc deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - 4}{-2} = 3$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + 4}{-2} = -1$$

b)
$$2x^2 - 3x + 5 < 0$$

$$\Delta = b^2 - 4ac = 9 - 40 = -31$$

Le trinôme n'a donc pas de racine et reste tout le temps du signe de a = 2, il est donc positif sur \mathbb{R} . $S = \emptyset$.

Exercice 3 4 points

- **1.** (v_n) est une suite géométrique de raison q = 3. On donne $v_0 = 2$.
 - a) Exprimer v_n en fonction de n.

$$v_n = v_0 \times q^n = 2 \times 3^n$$
.

b) Calculer v_{11} .

$$v_{11} = 2 \times 3^{11} = 354\ 294$$
.

- **2.** (u_n) est une suite arithmétique de raison r = 2. On donne $u_5 = 3$.
 - a) Exprimer u_n en fonction de n.

$$u_n = u_0 + nr = u_5 + (n-5)r = 3 + (n-5) \times 2 = 3 + 2n - 10 = 2n - 7.$$

b) Calculer u_0 .

$$u_0 = 2 \times 0 - 7 = -7$$
.

Exercice 4 6,5 points

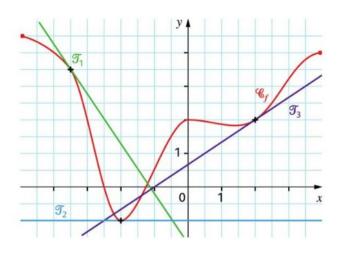
1. On considère la fonction f définie sur l'intervalle [-5; 4] et \mathcal{C}_f sa courbe représentative ci-contre. \mathcal{T}_1 , \mathcal{T}_2 et \mathcal{T}_3 sont les tangentes à \mathcal{C}_f .

Déterminer graphiquement :

On rappelle que f(x) se lit sur l'axe des ordonnées et que f'(x) est le nombre dérivé, donc le coefficient directeur de la tangente.

$$f(-3,5) = 3,5$$
 ; $f'(-3,5) = -1,5$

$$f(-2) = -1$$
 ; $f'(-2) = 0$



2. Calculer f'(x) dans les cas suivants (on simplifiera au maximum l'expression trouvée):

$$\mathbf{a}) f(x) = \left(3 + 2x\right) \sqrt{x}$$

 $f = uv \text{ avec } u(x) = 3 + 2x \text{ et } v(x) = \sqrt{x}$ $donc \ u'(x) = 2 \text{ et } v'(x) = \frac{1}{2\sqrt{x}}$

donc
$$f' = u'v + uv'$$
, soit $f'(x) = 2\sqrt{x} + \frac{3+2x}{2\sqrt{x}}$

$$= \frac{4x}{2\sqrt{x}} + \frac{3+2x}{2\sqrt{x}} = \frac{3+6x}{2\sqrt{x}}$$

b)
$$f(x) = \frac{3x^2}{x-2}$$

$$f = \frac{u}{v}$$
 avec $u(x) = 3x^2$ et $v(x) = x - 2$

donc
$$u'(x) = 6x$$
 et $v'(x) = 1$

Donc
$$f' = \frac{u'v - uv'}{v^2}$$
,

soit
$$f'(x) = \frac{6x(x-2)-3x^2}{(x-2)^2} = \frac{3x^2-12x}{(x-2)^2}$$
.

3. f est une fonction définie et dérivable sur [-2; 5]. Le signe de sa dérivée f est donné ci-dessous. Donner le sens de variation de f dans le tableau ci-dessous.

x	-2		0		2		5
f'(x)		+	0	-	0	+	
f(x)		1	,		,	1	

Exercice 5 3,5 points

1. Simplifier les expressions suivantes : a)
$$e^{-3x} \times e^{4x} = e^{-3x + 4x} = e^x$$

b)
$$\frac{e^{2x+2}}{e^{2x}} = e^{2x+2-2x} = e^2$$
.

2. Développer puis simplifier l'expression suivante $(e^x + e^{-x})^2 = e^{2x} + 2e^x e^{-x} + e^{-2x} = e^{2x} + 2 + e^{-2x}$.

3. Dériver les fonction suivantes définies sur ℝ par :

a)
$$f(x) = 8e^{-0.26x}$$

 $f(x) = 8e^{ax+b}$, avec $a = -0.26$ et $b = 0$
Donc $f'(x) = 8ae^{ax+b} = 8 \times (-0.26)e^{-0.26x} = -2.08e^{-0.26x}$

b)
$$g(x) = (x-5)e^x$$
.
 $g = uv \text{ avec } u(x) = x-5 \text{ et } v(x) = e^x$
 $donc \ u'(x) = 1 \text{ et } v'(x) = e^x$
 $donc \ g' = u'v + uv', \text{ soit } g'(x) = e^x + (x-5)e^x$
 $= (1+x-5)e^x$
 $= (x-4)e^x$

Nom: Prénom:

TEST DE RENTRÉE DE MATHÉMATIQUES Sujet B

Spé math Term

1 heure

Les réponses sont à compléter sur la feuille de l'énoncé.

Exercice 1 3 points

Ce Q.C.M. comporte 4 questions. Pour chaque question, entourez la ou les bonnes réponses.

Une bonne réponse rapporte 0,5 point, une mauvaise réponse enlève 0,5 point.

On se place dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

Données	а	b	С	d
1. ABCD est un carré de côté a $\overrightarrow{AB} \cdot \overrightarrow{DC} =$	a^2	$-a^2$	0	2 <i>a</i>
2. Dans un triangle ABC, on a $AC = 4$; $AB = 5$ et $\widehat{BAC} = 120^{\circ}$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = 10$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = -10$	$\overrightarrow{BA} \cdot \overrightarrow{AC} = -10$	$\overrightarrow{AB} \cdot \overrightarrow{AC} = 20$
3. Dans un repère orthonormé, soient deux vecteurs \vec{u} (4; -5) et \vec{v} (3; -6). Alors $\vec{u} \cdot \vec{v}$ =	42	-48	-39	-18
4. $3x + 4y + 2 = 0$ est une équation cartésienne de droite	de vecteur normal \vec{u} (4; -3)	de vecteur normal \vec{u} (3; 4)	de vecteur directeur \vec{u} (-4; 3)	de coefficient directeur $m = \frac{-3}{4}$

Exercice 2 3 points

Résoudre les équations et inéquations suivantes :

a)
$$-x^2 + 4x + 5 = 0$$

 $\Delta = b^2 - 4ac = 16 + 20 = 36$

L'équation a donc deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - 6}{-2} = 5$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + 6}{-2} = -1$$

b)
$$2x^2 - 5x + 5 < 0$$

 $\Delta = b^2 - 4ac = 25 - 40 = -15$

Le trinôme n'a donc pas de racine et reste tout le temps du signe de a = 2, il est donc positif sur \mathbb{R} . $S = \emptyset$.

Exercice 3 4 points

- **1.** (v_n) est une suite géométrique de raison q = 2. On donne $v_0 = 3$.
 - a) Exprimer v_n en fonction de n.

$$v_n = v_0 \times q^n = 3 \times 2^n$$
.

b) Calculer v_{15} .

$$v_{15} = 3 \times 2^{15} = 98 \ 304$$

- **2.** (u_n) est une suite arithmétique de raison r = 3. On donne $u_4 = 10$.
 - a) Exprimer u_n en fonction de n.

$$u_n = u_0 + nr = u_4 + (n-4)r = 10 + (n-4) \times 3 = 10 + 3n - 12 = 3n - 2.$$

b) Calculer u_0 .

$$u_0 = 3 \times 0 - 2 = -2$$
.

Exercice 4 6,5 points

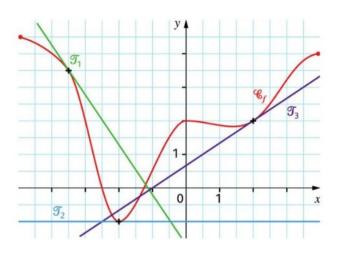
1. On considère la fonction f définie sur l'intervalle [-5; 4] et \mathcal{C}_f sa courbe représentative ci-contre. \mathcal{T}_1 , \mathcal{T}_2 et \mathcal{T}_3 sont les tangentes à \mathcal{C}_{f} .

Déterminer graphiquement :

On rappelle que f(x) se lit sur l'axe des ordonnées et que f'(x) est le nombre dérivé, donc le coefficient directeur de la tangente.

$$f(-2) = -1$$
 ; $f'(-2) = 0$

$$f(2) = 2$$
 ; $f'(2) = \frac{2}{3}$



2. Calculer f'(x) dans les cas suivants (on simplifiera au maximum l'expression trouvée):

$$\mathbf{a)} f(x) = (2-x)\sqrt{x}$$

$$f = uv \text{ avec } u(x) = 2 - x \text{ et } v(x) = \sqrt{x}$$

 $donc \ u'(x) = -1 \text{ et } v'(x) = \frac{1}{2\sqrt{x}}$

donc
$$f' = u'v + uv'$$
, soit $f'(x) = -\sqrt{x} + \frac{2-x}{2\sqrt{x}}$

$$= \frac{-2x}{2\sqrt{x}} + \frac{2-x}{2\sqrt{x}} = \frac{2-3x}{2\sqrt{x}}$$

b)
$$f(x) = \frac{2x^2}{x+3}$$

$$f = \frac{u}{v}$$
 avec $u(x) = 2x^2$ et $v(x) = x + 3$

donc
$$u'(x) = 4x$$
 et $v'(x) = 1$

Done
$$f' = \frac{u'v - uv'}{v^2}$$
,

soit
$$f'(x) = \frac{4x(x+3)-2x^2}{(x+3)^2} = \frac{2x^2+12x}{(x+3)^2}$$

3. f est une fonction définie et dérivable sur [-3; 4]. Le signe de sa dérivée f est donné ci-dessous. Donner le sens de variation de f dans le tableau ci-dessous.

x	-3		0		1		4
f'(x)		_	0	+	0	_	
f(x)		\		1			

Exercice 5 3,5 points

1. Simplifier les expressions suivantes : a)
$$e^{4x} \times e^{-2x} = e^{4x-2x} = e^{2x}$$
 b) $\frac{e^{5x+1}}{e^{5x}} = e^{5x+1-5x} = e^1 = e$.

b)
$$\frac{e^{5x+1}}{e^{5x}} = e^{5x+1-5x} = e^1 = e$$

2. Développer puis simplifier l'expression suivante $(e^x + e^{-x})^2 = e^{2x} + 2e^x e^{-x} + e^{-2x} = e^{2x} + 2 + e^{-2x}$.

3. Dériver les fonction suivantes définies sur IR par :

a)
$$f(x) = 8e^{-0.35x}$$

$$f(x) = 8e^{ax+b}$$
, avec $a = -0.35$ et $b = 0$

Donc
$$f'(x) = 8ae^{ax+b} = 8 \times (-0.35)e^{-0.35x} = -2.8e^{-0.35x}$$

b)
$$g(x) = (2x - 3)e^x$$
.

$$g = uv$$
 avec $u(x) = 2x - 3$ et $v(x) = e^x$
donc $u'(x) = 2$ et $v'(x) = e^x$

donc
$$g' = u'v + uv'$$
, soit $g'(x) = 2e^x + (2x - 3)e^x$
= $(2 + 2x - 3)e^x$
= $(2x - 1)e^x$

Barème : Ex 1: 0,5 par bonne réponse trouvée et -0,5 par mauvaise. Ex 2: a) 1,5 b) 1,5 Ex 3: 1 pt par question Ex 4: 1) 2 2) 4 3) 0,5 Ex 5: 1) 1 2) 1 3) 1,5