STATISTIQUE À DEUX VARIABLES

I. Statistique à deux variables :

<u>1°) Définition :</u>

Définition :

On appelle série statistique à deux variables (ou série statistique double), une série statistique où deux caractères sont étudiés simultanément.

Exemples :

Le poids et la taille de nouveaux nés dans une maternité.

Le volume des ventes et le montant alloué à la publicité dans une entreprise.

La consommation d'un véhicule et sa vitesse.

Remarque :

Dans ce chapitre, on n'étudiera que des séries statistiques doubles dont les deux caractères étudiés sont quantitatifs. Si, pour chacun des *n* individus de la population, on note x_i et y_i les valeurs prises par les deux caractères, on peut alors présenter la série statistique sous la forme d'un tableau :

Caractère <i>x</i>	x_1	x_2	<i>x</i> ₃	•••	X_n
Caractère y	y_1	\mathcal{Y}_2	<i>Y</i> 3	•••	\mathcal{Y}_n

Exemple 1 :

On a relevé, pour un modèle de voiture, la consommation en carburant (en L/100 km) pour différentes vitesse (en km/h) sur le cinquième rapport :

Vitesse x_i (en km/h)	60	70	90	110	130	150
Consommation y_i (en L/100 km)	3	3,1	3,7	4,7	6	9

Exemple 2 :

On a relevé, pour un site internet, le nombre de visiteurs (en milliers) par an pendant les huit premières années de fonctionnement :

Année	2014	2015	2016	2017	2018	2019	2020	2021
Rang x_i	1	2	3	4	5	6	7	8
Nombre de visiteurs y_i (en millier)	0,3	1,1	1,5	2,7	3	4	4,5	5,6

<u>2°) Nuage de points :</u>

Définition :

Le nuage de points d'une série statistique à deux variables est la représentation graphique de cette série dans un repère orthogonal où l'un des caractères est en abscisse et l'autre en ordonnée.

Exemple 1 :

Voici le nuage de points de l'exemple 1 précédent :

Exemple 2 :

Voici le nuage de points de l'exemple 2 précédent :

Nuage de points à la calculatrice :

Pour les TI :

 \bullet Accéder au menu Stats , EDIT. Saisir les valeurs du caractère abscisse dans L_1 et celles du caractère ordonnée dans $L_2.$

• Accéder au graphique statistique : 2nde graphstats, entrer dans graph1, sélectionner Aff, type nuage (1er type), ListeX : L₁, ListeY : L₂, puis zoom 9 : Zoomstat

Exemple :

Voici le nuage de points de l'exemple 1 précédent :

L2(7)=

Tutos en vidéo (pour tout le cours) : Pour TI : <u>ici</u> ou

pour casio : <u>ici</u> ou

<u>4°) Point moyen :</u>

Définition :

Le point moyen G d'un nuage de N points $M_i(x_i; y_i)$, est le point de coordonnées G (x; y), où x et y sont

les moyennes des séries à une variable (x_i) et (y_i) ; c'est-à-dire :

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Exemples 1 :

Le point moyen du nuage de points de l'exemple 1 précédent est G(101,7 ; 4,9).

Exemple 2 :

Le point moyen du nuage de points de l'exemple 2 précédent est G(4,5 ; 2,84).

Remarque :

Les coordonnées du point moyen peuvent être obtenues à la calculatrice (voir tutos précédents) :

Pour les TI :

 \bullet Accéder au menu Stats , EDIT. Saisir les valeurs du caractère abscisse dans L_1 et celles du caractère ordonnée dans $L_2.$

 \bullet Puis Stats , CALC, 2:Stats 2-Var, indiquer L_1 pour Xlist, L_2 pour Ylist, et rien dans ListeFréq, puis entrer.

• On obtient les paramètres des deux séries, en particulier leurs valeurs \overline{x} et \overline{y} moyennes respectives des x_i et y_i .

<u>II. Ajustement affine :</u>

<u>1°) Définition :</u>

Définition :

Si les points du nuage sont sensiblement alignés (« forme étirée du nuage autour d'une ligne »), alors il existe une liaison affine entre les deux variables x et y. On peut alors tracer une droite qui ne passe pas loin de chacun des points. Cette droite est appelée droite d'ajustement. On dit alors qu'on a effectué un ajustement affine.

Remarques :

• Un ajustement affine n'est pas unique : suivant la méthode utilisée, on ne trouvera pas la même droite d'ajustement.

• En supposant que la droite d'ajustement soit un modèle pour le lien entre les variables, on peut effectuer des estimations et des prévisions grâce à la droite d'ajustement, soit par la graphique, soit par le calcul à l'aide de l'équation de la droite.

<u>1°) Ajustement affine graphique :</u>

Sur le nuage de points, on trace une droite passant au plus près de tous les points.

Exemple :

Dans l'exemple 1, il ne semble pas exister de liaison affine entre les deux variables. Dans l'exemple 2 en revanche, les points du nuage sont sensiblement alignés. Traçons une droite d'ajustement :

Remarque :

Par cette méthode, on effectue un tracé « au jugé », nous n'obtiendrons donc pas à chaque fois exactement la même droite.

<u>2°) Ajustement affine par la méthode des moindres carrés :</u>

Définition :

La méthode des moindres carrés est une méthode permettant de déterminer par le calcul une équation d'une droite d'ajustement. La droite obtenue par cette méthode est appelée droite de régression de *y* en *x*. C'est la droite d'équation y = ax + b réalisant le minimum de $\sum_i (y_i - (ax_i + b))^2$ pour le nuage de points (x_i, y_i) .

Si nous considérons l'équation réduite de la droite (de la forme y = ax + b), la calculatrice calculera a et b (voir tutos précédents) :

Pour les TI :

 \bullet Accéder au menu Stats , EDIT. Saisir les valeurs du caractère abscisse dans L_1 et celles du caractère ordonnée dans $L_2.$

• Puis Stats , CALC, 4 : RégLin(ax+b), indiquer L_1 pour Xlist, L_2 pour Ylist, et rien dans ListeFréq, puis entrer.

• Appuyer sur Entrer pour voir apparaître les coefficients *a* et *b*.

Exemple :

Reprenons l'exemple 2. Commençons par saisir les valeurs dans le tableau statistique de la calculatrice :

NORMAL FLOTT AUTO RÉEL RAD MP							
L1	L2	Lз	L4	Ls	2		
1	0.3						
2	1.1						
3	1.5						
4	2.7						
5	3						
6	4						
7	4.5						
8	5.6						
L2(9)=							

n

Appuyons sur entrer et complétons :

Ré9Lin(ax+b)

NORMAL FLOTT AUTO RÉEL RAD MP

Xliste:L1 Yliste:L2 ListeFréq: Enr ré9éQ:Y1 Calculer NORMAL FLOTT AUTO RÉEL RAD MP ÉDIT CALC TESTS 1:Stats 1 Var 2:Stats 2 Var

Allons ensuite chercher la fonction :

3:Med-Med GRé9Lin(ax+b) 5:Ré9De92 6:Ré9De93 7:Ré9De94 8:Ré9Lin(a+bx) 9↓Ré9Ln

Enfin on appuie sur entrer pour lancer le calcul et on obtient :

N	ORMAL	FLOTT	AUTO	RÉEL	RAD	MP	Ĩ
			Ré	9Li	n		
	y=a>	(+Ь					
	a=0.	7369	047	619			
	b=-0	.478	3571	428	6		
	r2=6	9.989	949	644	9		
	r=0.	9949	621	324	•		

Dans notre exemple, l'équation de la droite de régression est donc environ y = 0.74x - 0.48 (avec les coefficient arrondis au centième).

Remarque :

Nous pouvons également effectuer les calculs des coefficients de la droite de régression à l'aide d'un tableur.

III. Estimations, prévisions :

En supposant que l'évolution reste la même, on peut effectuer des estimations et des prévisions grâce à la droite d'ajustement, soit par la graphique, soit par le calcul à l'aide de l'équation de la droite.

Exemple :

Toujours dans l'exemple 1, supposons que les statistiques le l'année numéro 5 aient été perdues. Nous pouvons estimer alors la fréquentation du site grâce à l'ajustement affine que nous avons fait :

y = 0.74x - 0.48 avec x = 5, on obtient $y = 5 \times 0.74 - 0.48 = 3.22$. Nous estimons le nombre de visiteurs à 3 220 la cinquième année.

La valeur cherchée était à l'intérieur du nuage de points, on dit qu'on a fait une interpolation.

Exemple :

Toujours dans l'exemple 1, nous voulons estimer la fréquentation du site au bout de 20 ans de fonctionnement, en considérant que l'évolution reste la même.

y = 0.74x - 0.48 avec x = 20, on obtient $y = 20 \times 0.74 - 0.48 = 14.32$. Nous estimons le nombre de visiteurs à 14 320 la vingtième année.

La valeur cherchée était au-delà du nuage de points, on dit qu'on a fait une extrapolation. Il s'agit ici d'une prévision.